Pre-Training Acquisition Functions by Deep Reinforcement Learning for Fixed Budget Active Learning

نویسندگان

چکیده

Abstract There are many situations in supervised learning where the acquisition of data is very expensive and sometimes determined by a user’s budget. One way to address this limitation active learning. In study, we focus on fixed budget regime propose novel algorithm for pool-based problem. The proposed method performs with pre-trained function so that maximum performance can be achieved when number acquired fixed. To implement algorithm, uses reinforcement based deep neural networks as tailored situation. By using Q-learning-based function, realize learner which selects sample annotation from pool unlabeled samples taking fixed-budget situation into account. experimentally shown comparable or superior existing methods, suggesting effectiveness approach

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Concept Acquisition by Deep Reinforcement Learning

Explaining how intelligent systems come to embody knowledge of deductive concepts through inductive learning is a fundamental challenge of both cognitive science and AI. This project address this challenge by exploring how deep reinforcement learning agents, occupying settings similar to early-stage mathematical concept learners come to represent ideas such as rotation and translation. I first ...

متن کامل

Active Robotic Mapping through Deep Reinforcement Learning

We propose an approach to learning agents for active robotic mapping, where the goal is to map the environment as quickly as possible. The agent learns to map efficiently in simulated environments by receiving rewards corresponding to how fast it constructs an accurate map. In contrast to prior work, this approach learns an exploration policy based on a user-specified prior over environment con...

متن کامل

Learning how to Active Learn: A Deep Reinforcement Learning Approach

Active learning aims to select a small subset of data for annotation such that a classifier learned on the data is highly accurate. This is usually done using heuristic selection methods, however the effectiveness of such methods is limited and moreover, the performance of heuristics varies between datasets. To address these shortcomings, we introduce a novel formulation by reframing the active...

متن کامل

Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm

: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...

متن کامل

Pre-training Neural Networks with Human Demonstrations for Deep Reinforcement Learning

Deep reinforcement learning (deep RL) has achieved superior performance in complex sequential tasks by using a deep neural network as its function approximator and by learning directly from raw images. A drawback of using raw images is that deep RL must learn the state feature representation from the raw images in addition to learning a policy. As a result, deep RL can require a prohibitively l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neural Processing Letters

سال: 2021

ISSN: ['1573-773X', '1370-4621']

DOI: https://doi.org/10.1007/s11063-021-10476-z